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Abstract—The development of neural recording systems for
high-density, implantable applications has advanced through
innovations in feature extraction, spike detection, and data
management techniques. Kamboh and Mason (2010) introduced
on-chip feature extraction for spike sorting to simplify process-
ing. Rodriguez-Perez et al. (2012) designed a low-power spike
detection channel with embedded calibration and compression.
Gosselin et al. (2009) developed a mixed-signal multichip inter-
face to address bandwidth constraints. These innovations enhance
the performance of implantable neural interfaces.

Index Terms—Neural recording, spike detection, feature ex-
traction, low power, data compression

I. INTRODUCTION

In recent years, implantable neural recording systems have
emerged as a significant focus in biomedical engineering,
driven by advances in neuroscience, electronics, and compu-
tational technologies. These systems aim to capture neural
signals to help researchers decode the functioning of neural
networks, diagnose neurological disorders, or develop neural
prosthetics. Such systems must support high-density, multi-
channel recording to capture the brain’s complex neural activ-
ity while balancing constraints such as power consumption,
size, and signal quality to ensure long-term feasibility and
stability for implantation.

However, although with the development of micro-
electronics, this field has made many progresses, it also faces
several technical challenges.

A. Spike Sorting

Spike sorting is a critical step in classifying neural signals
into distinct neuron spikes, which is crucial for accurate
neural monitoring and interaction with prosthetic devices.
But implementing spike sorting on implantable devices is
challenging due to their limited processing power and the
need for real-time analysis. The primary challenge is how to
perform efficient on-chip feature extraction for spike sorting
while minimizing computational complexity and resource re-
quirements.

B. Power Consumption

Implantable neural interfaces are often constrained by
power consumption, as long-term operation within the human
body requires energy-efficient designs. Additionally, the large

amount of data generated by neural recordings requires effec-
tive data management, including compression and calibration,
to ensure that signals are accurately detected and transmitted
with minimal energy consumption. The challenge here is
designing a low-power, programmable neural spike detection
channel that can operate efficiently while integrated with
embedded calibration and data compression.

C. Band-width Limitation

Neural recording devices require handling multiple chan-
nels, resulting in large data bandwidth, especially those with
high-density electrode arrays, the amount of data generated can
be overwhelming. For implantable systems, this data must be
processed and transmitted with limited bandwidth. The main
difficulty is that reducing the data rate while still preserving
the quality and accuracy of the recorded neural signals.

II. SPIKE SORTING SYSTEM

A. Spike Detection

For spike detection, the normal methods to use are data
transformations, derivatives and template matching. But for
these methods often required intense computation. A more
simple way to detect spike is to set two threshold values, one
for plus magnitude and the other for minus magnitude. It’s
called double threshold (DT) to detect spike signals, they are
shown in Fig. 1 with red lines.

B. Feature Selection and Extraction

Traditionally, PCA and Wavelet Transforms (WT) are com-
ment way to sort spikes. However for on-chip multi-channel
feature extraction, they seem to be unsuitable. Here we just
simply use the accumulation of amplitude between the zero
crossing points, as:

ZC1 =

Z−1∑
n=0

x(n); ZC2 =

K−1∑
n=Z

x(n)

where ZC1 and ZC2 are the two features, K is the number
of samples in a spike and Z is the index of first zero crossing
after the spike has been detected. The value of Z is thus the
first zero crossing after a significant amount of energy in the
spike has already been recorded.



Fig. 1. Graphical representation of ZCF features for a spike detected using
dual thresholds. [1]

Fig. 1 shows that the spike is detected when the electrode
potential crosses the negative threshold. It should be mentioned
that there are still some samples before the detection that
belong to the spike and may contain useful information and
thus need to be stored in a buffer. The hardware structure
could be found in Fig. 2, where light colored blocks represent
memory elements.

Fig. 2. Hardware architecture of proposed signal detection and feature
extraction stages. [1]

Obviously, there are some strengths of this system. Firstly,
it can realize low power consumption while have a acceptable
accuracy of sorting. The feature extraction and classification
algorithms are optimized for implantable systems, minimizing
floating-point computations and hardware resource usage to
save power, making it ideal for long-term neural implants.
Besides, the circuit design reduces dependence on complex
memory and computational resources, saving chip area, which
is critical for implantable devices.

However, those strengths highly depend on the signal qual-
ity. Fixed threshold-based detection is susceptible to back-
ground noise and artifacts, leading to missed spikes or false
positives in noisy environments. And while effective, features
like peak amplitude and PCA may be insufficient for distin-
guishing complex or highly similar spike waveforms, limiting
classification accuracy.

III. LOW POWER SPIKE PROCESS SYSTEM

A. System Architecture

In [2], a sophisticated designed system was proposed for
neural signal processing. As the Fig. 3 shows, the raw signal
process rough flow is:

1) Signal Acquisition: First, neural signals are captured by
microelectrode arrays (MEAs) placed near neurons. A
bandpass low-noise amplifier (BP-LNA) boosts weak

Fig. 3. Block diagram of the neural channel architecture. [2]

neural signals while minimizing noise, at the same time
isolates the neural spike frequency range (commonly 300
Hz to 3 kHz, could be adjusted).

2) Spike Detection: In detection, the system compares the
signal amplitude against a pre-defined or dynamically
adjusted threshold. If the signal exceeds the threshold,
it is classified as a spike.

3) Spike Feature Extraction: Extracts features of each de-
tected spike. Rather than record the complete signal, the
system only collect some key features of the raw signal
shown in Fig. 4.

4) Transmission or Storage: Processed spike data is sent to
an external device (e.g., for storage, analysis, or real-
time use in closed-loop systems).

Fig. 4. Piece-Wise Linear spike approximation. [2]

B. Low Power Design Consideration

With the limited power supply and heat generation, low
power design should be considered in each part of the system.
Overall, the low-power design in the system is achieved
through modular design, application-specific integrated cir-
cuit (ASIC) implementation and spike-specified processing.
Specifically, the design consideration are:

• Modular Working
For the task of spike processing, it is not necessary to
utilize all components of the system. For practice, the
digital core can point out which blocks remain idle at each
operation mode and powered them off, either totally or



partially, by means of power gating techniques. It can also
incorporate clock division and clock gating strategies,
so that non-idle blocks work at the minimum clock
frequency able to comply with the selected operation
mode.

• Spike-specified Processing
Rather than always standby to analyze the spikes, the
system will start spike processing mode and analyze
when the input signal reaches a specific threshold value.
Only detected spikes are processed further to extract key
features (e.g., amplitude, width, and timestamp), avoiding
computations on irrelevant data.

• Spike-optimized Circuit
The BP-LNA and DAC parts are specified for the voltage
swing and frequency of spike biosignal. For example, the
employed DAC part utilizes a 6-bit R-2R resistive current
divider structure [3], which achieves requirements by very
low area occupation and a minimum power consumption.

C. System Evaluation

Overall, this novel system offers a way to collect and
process spike biosignal. There are significant advantages of
the system:

TABLE I
STATE-OF-ART PERFORMANCE COMPARISON. [2]

[4] [5] [6] This Work
Supply Voltage (V) 1.5 1.8 3 1.2
Sampling Rate (kS/s) 62.5 30 - 90
Midband Gain (dB) 59.5 70 67.8-78 47.5-65.5
Power (uW) 24.6 42.5 75 3.1

• Low power consumption
The complete channel consumes 2.8 uW at 1.2 V voltage
supply when operated in the signal tracking mode, and
3.1 uW when the feature extraction mode is enabled.
This power consumption is standout among other designs
while retaining other performances as table I.

• Programmability
The system features programmable elements such as gain
control in the BP-LNA and dynamic threshold adjustment
in the spike detection module. This flexibility makes the
design adaptable to a wide range of neural recording
conditions and electrode arrays.

However, the simplification of spike signal and data storage
could also bring some limitations to the system:

• Limited Feature Extraction
The system focuses only on basic spike features such as
amplitude and timestamp, which might limit its utility for
applications requiring more detailed spike shape informa-
tion or advanced classification algorithms.

• Simplistic Spike Detection Algorithm
The threshold-based spike detection mechanism, while
power-efficient, may struggle with overlapping spikes or
spikes with low signal-to-noise ratios (SNR).

IV. BANDWIDTH REDUCTION

A. Mixed-Signal Architecture

The prototype is composed of a mixed-signal front-end IC
and a digital processing and control IC.

Fig. 5. Block diagram of the multichip neural interface.[5]

In Fig.5, the mixed-signal front end is composed of 16
fully parallel data-acquisition channels including conditioning
circuits, data converters, and output registers. Each channel
is supplied with its own DAQ chain, which is scalable, and
provides signal conditioning, sampling, digitization, and each
channel output is multiplexed toward a digital readout with
channel decoding.

The parallel acquisition approach enables scalability for
various topologies, supports true simultaneous sampling for
precise neural code interpretation, and eliminates analog mul-
tiplexing, reducing noise, crosstalk, and power consumption.

The digitized samples undergo time-division multiplexing
(TDM) toward a digital readout which interfaces the digital
ASIC. The digital part provides control and enables com-
munications with a remote host interface through a four-
wire serial bus. It also provides bandwidth reduction to avoid
overwhelming data rates that result when recording from a
large amount of channels.

B. Action Potential Detection

AP detection identifies neural spikes using an absolute
value threshold detector and adaptive data buffering to capture
complete biopotential waveforms. Figure 6 illustrates SRAM
usage during neuronal AP detection. Initially, the first 16
samples are buffered in a FIFO and copied into the DPRAM
buffer upon detection. Subsequently, the remaining 48 samples
are transferred to memory, forming a 64-sample data packet
that is then delivered on the bus. The FIFO continuously
buffers incoming samples to ensure that waveform segments
preceding the detection point are not missed, preserving the
complete detected AP for storage in the DPRAM.

When bandwidth reduction is enabled, the detector com-
pares each sample’s amplitude against a programmable thresh-
old (3-5 standard deviations of input voltage). Upon thresh-
old crossing, a finite state machine (FSM in Fig.7) triggers
waveform capture, storing detected events, timestamps, and



Fig. 6. Detection/buffering of digitized AP waveforms.[5]

channel addresses in on-chip memory. The memory buffers 64-
sample windows (2 ms), ensuring full waveform preservation
and efficient data reduction while maintaining signal integrity.
Only detected APs are transmitted, eliminating the need to
send raw data.

Fig. 7. Schematic of the data buffering block.[5]

This AP detection presents an excellent tradeoff between
effectiveness and computational complexity, and uses bilateral
threshold detectors. The neural interface combines absolute
thresholding with data buffering to achieve a bandwidth reduc-
tion factor of up to 50 within typical recordings, and decreases
the raw neural data rate by 98%. This strategy enhances energy
efficiency and reduces data transmission demands without
compromising the quality of neural information.

Fig. 8. Communication protocol employed between the multichip interface
and the remote host. The five types of transactions allowed are shown.[5]

Then the digital ASIC optimizes neural data processing
and transmission. It integrates a configurable communica-
tion protocol(as in Fig.8), enabling dynamic adjustment of
thresholds and parameters to adapt to various electrode con-
figurations and applications. Data is structured into frames
and packets, containing metadata (channel ID, timestamp)

and compressed neural data, ensuring efficient transmission
and seamless decoding. To maintain real-time operation, the
system minimizes processing delays and uses synchronized
clocks across all channels, preserving the temporal accuracy
of action potentials.

C. Vertical Integration

The multichip neural interface employs a vertical integration
approach, implemented on the back of the epoxy base of a
metallic array to mount the ASICs and passive components.

1) Design and Fabrication of the Microelectrode Array:
The microelectrode array is fabricated from medical-grade
stainless steel using precision micromachining techniques.
Electrodes are arranged in a 4x4 matrix, with each pin shaped
and polished for smooth surfaces and biocompatibility. The
electrodes are electrically isolated using biocompatible epoxy,
ensuring accurate and independent recordings.

2) Postprocessing of the Array Base: Conductive metal
traces (chromium and gold) are applied to the array base
using photolithography and metal deposition techniques. These
traces serve as electrical connections between the electrodes
and the stacked integrated circuits (ICs).

3) Vertical Stacking of ASICs: Two application-specific in-
tegrated circuits (ASICs), a Mixed-Signal ASIC and a Digital
ASIC, are stacked vertically. The chips are connected and
protected using wire bonding and epoxy layers.

4) Compact and Biocompatible Design: The entire stacked
system occupies a 2.3 mm2 footprint for a 16-channel system
and is designed to fit within the subarachnoid space above the
cortex. A Parylene C coating is applied for electrical insulation
and biocompatibility, leaving the electrode tips exposed for
neural recording.

V. CONCLUSION

All references address critical challenges in neural spike
processing for implantable systems, focusing on low-power,
efficient designs suitable for high-density neural recording.
Kamboh and Mason’s work in [1] emphasizes real-time on-
chip feature extraction and classification with simplicity and
scalability, making it ideal for resource-constrained environ-
ments. Meanwhile, Rodriguez-Perez et al. in [2] introduce
advanced programmability with embedded calibration and
data compression, enhancing adaptability and data handling
efficiency.

The proposed mixed-signal neural recording interface inte-
grates efficient bandwidth reduction techniques, and compact
chip design. However, it faces limitations in noise resilience
and real-world performance, as most testing relied on synthetic
signals, necessitating more in vivo validation. The design
complexity of mixed-signal integration and vertical stacking
increases manufacturing challenges, and high firing rates or
neural seizures could overwhelm memory buffers, risking data
loss.

These works represent a significant advancement in neural
recording technologies, offering promising solutions for future
brain-machine interfaces and neuroscience research.
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